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The nesting vector and the magnetic susceptibility of the quasi-one-dimensional system having imperfectly
nested Fermi surface are studied analytically and numerically. The magnetic susceptibility has the plateaulike
maximum in sweptback region in the momentum space, which is surrounded by Q= �2kF ,��+qi �kF is the
Fermi wave number i=1,3 ,4 and q1, q3, and q4 are given in this paper�. The best nesting vector, at which the
susceptibility �0�Q� has the absolute maximum at T=0, is obtained near but not at the inflection point Q
= �2kF ,��+q4. The effect of the periodic potential V on the susceptibility is studied, which is important for the
successive transitions of the field-induced spin-density wave in �TMTSF�2ClO4. We obtain that the sweptback
region �surrounded by q2, q3, and q4 when V�0� becomes small as V increases and it shrinks to q3 for V
�4tb�, where tb� gives the degree of imperfect nesting of the Fermi surface, i.e., the second harmonics of the
warping in the Fermi surface. The occurrence of the sign reversal of the Hall coefficient in the field-induced
spin-density wave states is discussed to be possible only when V�2tb�−2t4, where t4 is the amplitude of the
fourth harmonics of the warping in the Fermi surface. This gives the limitation for the magnitude of V.
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I. INTRODUCTION

Various interesting properties, such as field-induced spin-
density wave �FISDW�, quantum Hall effect, and supercon-
ductivity have been observed in the quasi-one-dimensional
�Q1D� organic conductors, �TMTSF�2X, where X is PF6,
ClO4, etc.1 The successive transitions between the different
FISDW phases occur as the magnetic field is increased. The
FISDW has been understood as a consequence of the reduc-
tion in the dimensionality due to the magnetic field and the
quantization of the nesting vector.2–11 The FISDW phases are
characterized by the integer N, by which the wave number of
FISDW is given as Qx=2kF+NG, where kF is the Fermi
wave number, G=beB /�, b is the lattice constant �we take
b=1 in this paper�, e is the electron charge, B is the magnetic
field, and �=h /2� �h is the Planck constant�. We take �=1
hereafter in this paper. The Hall conductivity is quantized as
�xy =2Ne2 /h with the quantum number N of the nesting
vector.12–14 The quantization of the x component of the nest-
ing vector Qx can be seen as the sharp peaks in the suscep-
tibility for the noninteracting system �0�Q� at Qx=2kF+NG
in the magnetic field.

The peaks of �0�Q� in the magnetic field can be under-
stood to some extent by the peaks of �0�Q� in the absence of
the magnetic field. If the nesting of the Fermi surface is
perfect, �0�Q� in the absence of the magnetic field diverges
at the nesting vector as temperature becomes zero. In that
case the successive transitions of FISDW does not happen. If
the nesting of the Fermi surface is not perfect, the best nest-
ing vector at B=0, which gives the maximum of �0�Q�, is
located in the reciprocal space at

Q = Q0 + q , �1�

where

Q0 = �2kF,�� , �2�

and q�0. If qx�0, the quantum number N of FISDW is
positive. If qx�0 at the best nesting vector, however, the
negative N is possible in some region of the magnetic field.15

The umklapp scattering has been proposed as the alternative
explanation for the negative N �Ref. 16�. We do not consider
the umklapp scattering in this paper.

Although �TMTSF�2PF6 is well understood by the quasi-
one-dimensional model, �TMTSF�2ClO4 is a little more com-
plicated. Below TAO�24 K the anion ClO4 �which has no
inversion symmetry� orders alternatively in the y direction,
resulting the periodic potential V in the electron system. Ac-
tually, the magnetic field and temperature phase diagram in
�TMTSF�2PF6 �Refs. 17–21� is different from that in
�TMTSF�2ClO4 �Refs. 22–24�. The origin of the different
phase diagrams in �TMTSF�2PF6 and �TMTSF�2ClO4 is
caused by the periodic potential V. The magnitude of V is
first estimated to be of the order of TAO=24 K, i.e., V� tb
�Refs. 25 and 26�. The suppression of the N=0 FISDW
state25 and even-N FISDW states26 has been shown by the
perturbation in V. On the other hand, the magnitude of V has
been estimated to be V=0.83tb from the angle dependence of
the magnetoresistance by Yoshino et al.27 By treating V not
in perturbation, a lot of interesting features, such as existence
of several nesting vectors28–31 and the phase diagram of the
FISDW states,32,33 has been obtained. Recently, Yoshino et
al.34 has estimated the value to be V=0.028ta �V=0.34tb with
their estimation ta=12tb�. Lebed et al.35,36 have estimated the
value as V=0.2tb. The estimation of V is given in this paper
from the existence of the sign reversal of the Hall effect.

In this paper, we study the nesting vector and the suscep-
tibility in the quasi-one-dimensional system with imperfectly
nested Fermi surface in the absence of the magnetic field.
The analytical expression of the susceptibility and the nearly
flat region in the reciprocal space is given analytically in the
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simple model with V=0. The effect of V on the nesting vec-
tor and the susceptibility are studied in detail numerically.
Although we consider the zero magnetic-field case, we hope
that the obtained results are valid in a finite magnetic-field
case.

II. MODEL

We neglect the small dispersion in the kz direction and
study the tight-binding model in the square lattice with an-
isotropic transfer integral elements ta	 tb. We take the lattice
constant to be one. In the real system, the crystal is triclinic
and we have to consider the multiple-transverse-transfer
integrals;37 but most of the essential features are obtained by
studying the simple model in the square lattice.1 The energy
dispersion can be linearized with respect to kx and we take
account the higher harmonic terms for ky as


�k� = vF��kx� − kF� + t��ky� , �3�

where

t��ky� = − 2tb cos ky − 2tb� cos�2ky� − 2t3 cos�3ky�

− 2t4 cos�4ky� �4�

and we study the case tb, tb�, t3, and t4 to be positive. The
terms proportional to t3 and t4 are thought to be essential15,33

to understand the negative N phase38,39 of FISDW in some
region of the magnetic field. The Fermi surface consists of
two “Fermi lines” near kx� �kF as shown in Fig. 1. The
Fermi surface is almost nested, i.e., when we translate the
left part of the Fermi line with the vector Q�Q0, it overlaps
with the right part of the Fermi line; but the overlap is not
perfect due to the tb� and t4 terms.

The Brillouin zone is divided into halves in the ky direc-
tion by the periodic potential. The Hamiltonian is written as
a 2�2 matrix with the anion potential V as

H = �
�k� V

V 
�k + QA�
� , �5�

where QA= �0,��. The energy E�k� is given by

E�k� =
1

2
�
�k� + 
�k + QA� � ��
�k� − 
�k + QA�	2 + 4V2� ,

�6�

and the Fermi surface consists of four lines as shown in
Fig. 2.

It is known28 that the susceptibility �0�Q� has the maxi-
mum near Q�Q0 if V
1.5tb when tb�=0.1tb �i.e., V
15tb��,
while the absolute maximum of �0�Q� is located near Q
��2kF�2V /vF ,� /2� if V�1.5tb. The peak of �0�Q� near
Q�Q0 is caused by the nesting between the outer Fermi
surface and the inner Fermi surface �kx

�R+� and kx
�L−��, i.e., the

red and blue arrows in Fig. 2, while the peaks of �0�Q� near
Q��2kF�2V /vF ,� /2� are caused by the nesting of the
outer Fermi surfaces �kx

�R+� and kx
�L+�	 or the inner Fermi

surfaces �kx
�R−� and kx

�L−�	 �Refs. 32, 40, and 41�. The maxi-
mum value of �0�Q� near Q�Q0 depends weakly on V if
V
0.4tb, and it decreases as V increases if V�0.4tb. Sen-
gupta and Dupuis29 and Zanchi and Bjelis30 obtained similar
results.

In this paper we examine in detail the nesting properties
of the quasi-one-dimensional systems without and with the
periodic potential �V
0.5tb�. Thus we focus on the nesting
condition for only Q�Q0.

III. NESTING OF THE FERMI SURFACE FOR V=0

In this section we study the nesting properties of the
quasi-one-dimensional system described by Eq. �3�. The
Fermi surface consists of two curves �see Fig. 1�. The right
and left parts of the Fermi surface are given as a function
of ky,

kx
�R��ky� = kF −

1

vF
t��ky� , �7�

kx
�L��ky� = − kF +

1

vF
t��ky� . �8�

We translate the left part of the Fermi surface with the nest-
ing vector Q=Q0+q. The translated curve is given by
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FIG. 1. �Color online� Fermi surface for V=0.
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FIG. 2. �Color online� Fermi surface for V�0.
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kx
�L���ky� = kF + qx +

1

vF
t��ky + qy + �� . �9�

The difference between the right part of the Fermi surface
and the translated left part of the Fermi surface is given by

kx
�L���ky� − kx

�R��ky� = qx +
1

vF
�t��ky� + t��ky + qy + ��	 .

�10�

If tb�= t4=0, the nesting of the Fermi surface is perfect

with qx=qy =0, i.e., kx
�L���ky�−kx

�R��ky�=0 for all values of ky.
If tb��0 or t4�0, the nesting of the Fermi surface is not
perfect. In this case the Fermi surface intersects with the
translated one with the nesting vector Q0+q, if qx and qy
satisfy

qx =
− 1

vF
�t��ky� + t��ky + qy + ��	

=
4

vF

tb sin�Ky�sin�qy

2
� + tb� cos�2Ky�cos�qy�

+ t3 sin�3Ky�sin�3qy

2
� + t4 cos�4Ky�cos�2qy�
 ,

�11�

for some value of Ky, where

Ky = ky +
qy

2
. �12�

Equation �11� is the condition for the nesting vector �Q
=Q0+q� to realize the intersection of the translated left part
of the Fermi surface with the right part of the Fermi surface
at ky. In Fig. 3 we plot qx vs Ky for qy =0. We define two
vectors, q1 and q3, as q1y =q3y =0 and q1x and q3x being the
minimum and the maximum of qx as a function of Ky at qy
=0, respectively. When t4� tb� /4 �in this paper we study only
in this case�, the maximum of qx as a function of Ky for qy
=0 is given at Ky =0 and ��, and the minimum of qx as a
function of Ky for qy =0 is given at Ky = �� /2 as shown in
Fig. 3;

q1 = � 4

vF
�− tb� + t4�,0� , �13�

q3 = � 4

vF
�tb� + t4�,0� . �14�

We define q2=q1 for V=0 and we will define q2 for V�0 in
Sec. V.

We plot qx vs Ky �Eq. �11�	 for some values of qy in Fig.
4. As seen in Fig. 4, qx as a function of Ky has two mini-
mums at Ky = �� /2 �qx

min����qy�	 and one maximum at 0
�Ky �� /2 �qx

max�qy�	 if 0� �qy��q4y �q4 will be given
later�. There is one minimum at Ky =−� /2 and one maxi-
mum at Ky =� /2 if �qy��q4y. We obtain qx

min�+��qy� and
qx

min�−��qy� as

qx
min�+��qy� =

4

vF
�− tb� cos qy + tb sin

�qy�
2

− t3 sin
3�qy�

2
+ t4 cos 2qy� , �15�
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FIG. 3. �Color online� qx vs Ky �Eq. �11�� for qy =0 and
qy =�.
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FIG. 4. �Color online� qx vs Ky �Eq. �11�	 for some values of qy.
There are two minimums �qx

min����qy�	 and one maximum
�qx

max�qy�	 of qx as a function of Ky for each 0� �qy��q4y, while
only one minimum and one maximum of qx for �qy��q4y as shown
by the dotted vertical lines.
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qx
min�−��qy� =

4

vF
�− tb� cos qy − tb sin

�qy�
2

+ t3 sin
3�qy�

2
+ t4 cos 2qy� . �16�

If t3 and t4 are finite, we have to solve the fourth-degree
equation to obtain the expression of qx

max�qy�, but it is easy to
obtain qx

max�qy� numerically. We define q4= �q4x ,q4y� by the
equation

qx
min�+��q4y� = qx

max�q4y� = q4x. �17�

If t3= t4=0, the simple expressions of qx
max�qy� and q4 are

obtained as

qx
max�qy� =

4

vF
�tb� cos qy +

tb
2 sin2 qy

2

8tb� cos qy
� , �18�

q4x =
1

vF

24tb�

�1 + 128� tb�

tb
�2

+ 1
, �19�

and

q4y = � 2 sin−1
 8
tb�

tb

�1 + 128� tb�

tb
�2

+ 1

 . �20�

Note that qx
max�qy� has the physical meaning only if �qy�

�q4y, since the analytical form �Eq. �18�	 obtained from the
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FIG. 5. �Color online� qx
min�−��qy� �dashed lines in qx�q1x�,

qx
min�+��qy� �thick blue lines in q1x�qx�q4x and dashed lines in

qx�q4x�, and qx
max�qy� �thick green lines in q3x�qx�q4x and

dashed green lines in qx�q4x�. We take tb� / tb=0.1 and t3= t4=0
�upper figure� and t3 / tb=0.02 and t4 / tb=0.002 �lower figure�. In the
sweptback region enclosed by q1, q3, and q4, �0�Q� has large
values.
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FIG. 6. �Color online� �0�Q� at T=0 �Eq. �22�� as a function of
qx. We take tb� / tb=0 and t3= t4=0 �upper figure�; t3 / tb=0.02 and
t4=0 �middle figure�; and t3 / tb=0.02 and t4 / tb=0.002 �lower fig-
ure�. As obtained by Zanchi and Montambaux �Ref. 15�, t3 reduces
the peak height near q4 and t4 lifts the degeneracy at q1 and q3.
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case of t3= t4=0 and the numerically obtained values at �qy�
�q4y corresponds to the local maximum of qx as a function
of sin�Ky /2� at �sin�Ky /2���1. We plot qx

max�qy�, qx
min�+��qy�,

and qi �i=1, 3, and 4� in Fig. 5. There is a large overlap
between the Fermi line and the translated one if q is in the
sweptback region with the apexes q1 and q4 enclosed by the
thick lines in Fig. 5.

IV. SUSCEPTIBILITY IN THE Q1D SYSTEM WITH V=0

The susceptibility

�0�Q� = �
k

f�Ek+Q� − f�Ek�
Ek − Ek+Q

, �21�

where f�Ek� is the Fermi distribution function, is calculated
at T=0 as

�0�Q� = �
−�

� dky

2�
�

kx
�L��ky�

kx
�R��ky� dkx

2�

2


�k − Q� − 
�k�

=
1

�
�

−�

� dky

2�
�kx
�L��ky�

0 dkx

vFQx + t��ky − Qy� − t��ky�

+ �
0

kx
�R��ky� dkx

vF�− 2kx + Qx� + t��ky − Qy� − t��ky�



=
1

2�vF
�

−�

� dky

2�

 vFkF − t��ky�

vFQx + t��ky − Qy� − t��ky�

−
1

2
log�vF�Qx − 2kF� + t��ky − Qy� + t��ky�

vFQx + t��ky − Qy� − t��ky�
�
 .

�22�

The susceptibility is finite at T=0 and has the singularity
�kinks� as a function of Q. The singularity of �0�Q� comes
from the integration of the logarithmic term in Eq. �22�. For
Qy =� �i.e., qy =0� and t3= t4=0, the singular part of �0�Q0

+Q� is calculated as
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FIG. 7. �Color online� �0�Q� at T=0 �Eq. �22�� as a function of
qx for �qx ,qy� on the curves �qx

min�+��qy� ,qy� �filled green diamonds�
and �qx

max�qy� ,qy� �open blue circles� in Fig. 5. For qx�q4x, we use
Eq. �18�, although curves �qx

max,qy� terminate at q=q4. Note that
the absolute maximum is not realized at �q4x ,q4y�. We take tb� / tb

=0.1 and t3= t4=0.
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FIG. 8. �Color online� �0�Q� at T=0 �Eq. �22�� as a function of
qy for �qx ,qy� on the curves (qx

min�+��qy� ,qy) �filled green diamonds�
and (qx

max�qy� ,qy) �open blue circles� in Fig. 5. We take tb� / tb=0.1
and t3= t4=0.

FIG. 9. 3D plot of �0�Q� at T=0 �Eq. �22�� as a function of qx

and qy. We take tb� / tb=0.1 and t3= t4=0.
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FIG. 10. �Color online� qx vs Ky �Eq. �27�	 for qy =0 and V / tb
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�0,sing =
1

�vF
�

−�

� dky

2�
�−

1

2
�log�vFqx − 4tb� cos 2ky

2kFvF
�

=�−
1

2�vF
log� qxvF + ��qxvF�2 − �4tb��

2

4kFvF
�

if �qxvF� � 4tb�

−
1

2�vF
log� tb�

kFvF
�

if �qxvF� � 4tb�

� .

�23�

It is obtained from Eq. �23� that �0�q� has a plateau as a
function of qx when t3= t4=0 and qy =0. If t3, t4, and qy are
not zero, we have to integrate Eq. �22� numerically. In Fig. 6
we plot �0�Q� for several t3, t4, and qy as a function of qx. It
can be seen that if t3= t4=0, nearly flat peak at
qx

min�+��qy��qx�qx
max first increases as qy increases, and it

has the absolute maximum before qy reaches q4y �=0.2065�
and vFq4x / tb=0.956 when tb� / tb=0.1� as shown in the top
figure in Fig. 6. If t3�0, the peaks for qy �0 are suppressed
as shown in the middle figure in Fig. 6. If t4�0, the degen-
eracy of �0�Q0+Q� at q1 and q3 is lifted and the absolute
maximum of �0�Q0+q� is obtained at q1 for the sufficiently
large values of t3 and t4 as seen in the bottom figure in Fig.
6.

As seen in Fig. 6, �0�Q0+q� has a plateaulike maximum
in the region qx

min�+��qy��qx�qx
max�qy�. The absolute maxi-

mum of �0�Q0+q� occurs at q close to q4 but not at q=q4 as
seen in Figs. 7 and 8, where we plot �0�Q0+q� as a function
of qx or qy on the curves of qx=qx

min�+��qy� and qx=qx
max�qy�,

respectively. The three-dimensional plot of �0�Q0+q� is
shown in Fig. 9. When t3= t4=0 and qy =q4y, Eq. �11� be-
comes

qx =
1

kF

4tb��6 – 16 sin4�Ky − �
2 �	

�1 + 128� tb�

tb
�2

+ 1
. �24�

Therefore, qx as a function of Ky has a maximum at Ky
=� /2 as qx�6–16�Ky −� /2�4 when qy =q4y. With the vector
Q=Q0+q4 the nesting of the Fermi surface is better than
other q’s, which will make the expectation of the large
�0�Q0+q�. However, the region of qy �where �0�Q0+q� is
mainly contributed	 is larger at qx
q4x and �qy�
q4y than at
q=q4. This is the reason why the absolute maximum of
�0�Q0+q� is not located at the inflection point �q=q4�.

V. NESTING OF THE FERMI SURFACE FOR
VÅ0

In this section, we study the effects of periodic potential V
on the nesting of the Fermi surface and the susceptibility.
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FIG. 11. �Color online� qx as a function of Ky for qy /�=0.1.
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When V�0, there are two pairs of the Fermi lines in kx
−ky plane �see Fig. 2�, which are given by kx as a function of
ky, i.e., kx

L��ky� and kx
R��ky� for the left and the right parts of

the Fermi lines, respectively. The nesting vectors are charac-
terized into four types according to the pairs of the left and
right parts of the Fermi lines, i.e., �+,−�, �−,+�, �+,+�, and
�−,−� as shown in Fig. 2. The left and right parts of the
Fermi lines are given by

kx
�L���ky� = − kF −

1

vF
�− t��ky� − t��ky + ��

� ��t��ky� − t��ky + ��	2 + 4V2� , �25�

and

kx
�R���ky� = kF +

1

vF
�− t��ky� − t��ky + ��

� ��t��ky� − t��ky + ��	2 + 4V2� . �26�

The condition for the Fermi surface intersects by the trans-
lation of the left part �Eq. �11� for V=0	 is written as the four
equations �++, +−, −+, and −−�,

qx
���� =

1

2vF
�− t��ky� − t��ky + �� − t��ky + qy�

− t��ky + qy + �� � ��t��ky� − t��ky + ��	2 + 4V2

� ��t��ky + qy� − t��ky + qy + ��	2 + 4V2� . �27�

When qy =0, we obtain Eq. �27� for �+,−� and �−,+� to be
the same as that for V=0 �Eq. �11�	,

qx
�+−� = qx

�−+� =
1

vF
�− t��ky� − t��ky + ��	 . �28�

The condition for the intersect of �+,+� is obtained as

qx
�++� =

1

vF
�− t��ky� − t��ky + ��	

+
1

vF

��t��ky� − t��ky + ��	2 + 4V2, �29�

and the condition for the intersect of �−−� is obtained as

qx
�−−� =

1

vF
�− t��ky� − t��ky + ��	

−
1

vF

��t��ky� − t��ky + ��	2 + 4V2. �30�

We define q0x, q1x, q2x, and q3x as the maximum of qx
�−−�

�at Ky = �� /2�, the minimum of qx
�+−� �at Ky = �� /2�, the

minimum of qx
�++� �at Ky = �� /2�, and the maximum of qx

�+−�

�at Ky =0 and �� as a function of Ky when qy =0 �q0y =q1y
=q2y =q3y =0�, respectively �see Fig. 10�, i.e.,

q0 = � 1

vF
�− 4tb� + 4t4 − 2V�,0� , �31�

q1 = � 1

vF
�− 4tb� + 4t4�,0� , �32�

q2 = � 1

vF
�− 4tb� + 4t4 + 2V�,0� , �33�

q3 = � 1

vF
�4tb� + 4t4�,0� . �34�

When qy is given, the maximums and minimums of qx
�+−� are

obtained as a function of Ky as shown by the filled green
circles and the filled squares in Figs. 10–13. We define
qx

max�qy� and qx
min�+��qy� by the maximums �filled green

circles� and minimums �filled squares� of qx
�+−� for each qy,

respectively. We also define qx
min�−��qy� by the value of qx

�−−�
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at Ky = �� /2 �open black squares� and qx
min�++��qy� by the

value of qx
�++� at Ky = �� /2 �open circles�. In Figs. 14–17 we

plot qx
max�qy�, qx

min�+��qy�, qx
min�−��qy�, and qx

min�++��qy� in the
planes of qx and qy for V / tb=0.1, 0.3, 0.4, and 0.5. As V
becomes zero, qx

min�++��qy�, qx
max�qy�, and qx

min�−��qy� approach
to qx

min�+��qy�, qx
max�qy�, and qx

min�−��qy� at V=0, respectively
�cf. Fig. 5�. On the other hand, qx

min�+��qy� has no partner at
V=0, since the filled squares in Figs. 10–13 become not the
minimum but just the crossing points due to the folding in Ky
as V becomes zero. We define q4 as the crossing points of
qx

min�++��qy� and qx
max�qy�, which is the extension of that in

V=0.
We plot �0�Q0+q� as a function of qx for several values

of qy in Fig. 18 �V / tb=0.2� and Fig. 19 �V / tb=0.4� for the
parameters tb� / tb=0.1 and some values of t3 and t4. The con-
tour plots of �0�Q0+q� in the kx-ky plane are shown in Fig.
20 �t3= t4=0� and Fig. 21 �t3 / tb=0.02, t4 / tb=0.002� for

V / tb=0, 0.2 �V / tb�=2�, and 0.4 �V / tb�=4�. When 0�V�4tb�,
q1x�q2x�q3x. In this case �0�Q0+q� has a plateaulike maxi-
mum in the sweptback region enclosed by q2, q4, and q3 as
shown in Figs. 14 and 15. This region shrinks to the point q3
when V / tb�=4 as shown in Fig. 16. The absolute maximum of
�0�Q0+q� occurs near q4 if t3= t4=0. The effects of t3 and t4
on �0�Q0+q� are the same as those at V=0. A finite t3 sup-
presses �0�Q0+q� at qy �0 and t4 lifts the degeneracy at
q2x�qx�q4x. If V�4tb�, we obtain q1x�q3x�q2x and there
is no region where �0�Q� has a plateaulike maximum as
shown in Figs. 16, 17, and 19. In that case, the effects of t3
and t4 are small. In Fig. 22, q2 and q which gives the maxi-
mum of �0�Q0+q� �i.e., the best nesting vector� are shown
for some values of V / tb in the case of t3= t4=0. The best
nesting vector moves to q3 as V / tb approaches 0.4.

The negative Hall constant in some region of the mag-
netic field38,39 has been explained by the t3 and t4 terms.15

When V=0, the terms with t3 / tb=0.02 and t4 / tb=0.002 make
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FIG. 18. �Color online� �0�Q� at T=0 as a function of qx. The
parameters are the same as in Fig. 6 but V / tb=0.2.

−2 −1 0 1 2
vF qx / tb

1.5

2

2.5

3

3.5

χ 0
(Q

)

tb’/tb=0.1, t3=t4=0

qy/π=0,0.02,0.04,...,0.4
qy/π=0.2

qy/π=0.4

V/tb=0.4

qy/π=0.1

qy/π=0.3
qy/π=0

(a)

−2 −1 0 1 2
vF qx / tb

1.5

2

2.5

3

3.5

χ 0
(Q

)

tb’/tb=0.1, t3/tb=0.02, t4=0

qy/π=0,0.02,0.04,...,0.4
qy/π=0.2

qy/π=0.4

V/tb=0.4

qy/π=0.1

qy/π=0.3
qy/π=0

(b)

−2 −1 0 1 2
vF qx / tb

1.5

2

2.5

3

3.5

χ 0
(Q

)

tb’/tb=0.1, t3/tb=0.02, t4/tb=0.002

qy/π=0,0.02,0.04,...,0.4
qy/π=0.2

qy/π=0.4

V/tb=0.4

qy/π=0.1

qy/π=0.3
qy/π=0

(c)
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the absolute maximum of �0�Q� in the zero magnetic field to
be at q1 �best nesting vector�, while the best nesting vector is
located near q4 if t3= t4=0 as shown in Fig. 6. The negative
Hall constant is possible since q1x�0. If V / tb��0 and t3 and
t4 are the same as above, the best nesting vector is q2 �see the
lower figures in Fig. 18 and the middle figure in Fig. 21�. As
far as V�2tb�−2t4, the negative Hall constant is possible
since q2x�0. If V�2tb�−2t4, however, the best nesting vec-
tor q2 has the positive x component as seen in the lower
figures in Figs. 18 and 19. Therefore, the negative Hall con-
stant is difficult to be stabilized when V�2tb�−2t4. Recently,
the authors33 have numerically obtained the phase diagram
for the quantum Hall effect as a function of the magnetic
field and periodic potential V. We have shown that the nega-
tive Hall constant �N=−2� appears only in the region 0.03

V / tb
0.2 �0.3
V / tb�
2� for the parameters tb� / tb=0.1,
t3 / tb=0.02, and t4 / tb=0.002 �the upper figure of Fig. 12 in
Ref. 33�. That result can be understood by the fact that for
V�2tb�−2t4 the best nesting vector has the positive x com-
ponent. The existence of the negative Hall constant for
V / tb��0.3 is understood by the effect of V that will make
�0�Q0+q� at q�q4 smaller. Experimentally, a negative Hall
effect is observed when the system is cooled slowly �less

than 0.03 K/s� and the external magnetic-field region for the
negative Hall effect becomes larger as the cooling rate be-
comes slower �the slowest cooling rate is 0.000 09 K /s�
�Ref. 38�. It is expected that the magnitude of the periodic
potential V becomes larger at the slower cooling rate. There-
fore, we can conclude from the existence of the negative Hall
effect in �TMTSF�2ClO4 that V�2tb�−2t4. The value of V
estimated from the magnetic-field-angle dependence of the
conductivity34–36 is close to the border of this condition.

VI. SUMMARY AND DISCUSSIONS

We have studied the nesting vector and �0�Q� in the
quasi-one-dimensional systems having the imperfectly
nested Fermi surface �the imperfectness is measured by tb��.
We have obtained the plateaulike maximum of �0�Q� when
Q is in the sweptback region with the apexes q1 and q4. The
absolute maximum of �0�Q� is obtained near but not at Q
=Q0+q4 if t3= t4=0. When the periodic potential V is finite
but not as large as 4tb� �which is thought to be the case in
�TMTSF�2ClO4	, the sweptback region �with apexes q2 and
q4� becomes smaller as V increases and shrinks to q3 when
V=4tb�. The best nesting vector moves to Q�Q0+q3. The
absolute maximum of �0�Q� is located at Q=Q0+q3 when
V�4tb�. The negative Hall coefficient observed in the field-
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induced spin-density wave states in some region of the mag-
netic field is shown to be possible only when V�2tb�−2t4, in
which case the vectors q’s giving the plateaulike maximum
of �0�Q0+q� �sweptback region� can have the negative x
component �q2x�0�. Therefore, we conclude that V should
be smaller than 2tb�−2t4 in �TMTSF�2ClO4, where the sign
reversal of the Hall effect has been observed.

Recently, a lot of interest is attracted by the quasi-one-
dimensional conductor �Per�2M�mnt�2 �where Per=perylene,

mnt=maleonitriledithiolate, and M =Au and Pt� �Refs.
42–46�. The charge-density wave �CDW� state is realized in
�Per�2M�mnt�2 and the successive transitions of the field-
induced CDW has been observed in high magnetic field42 in
contrast to the field-induced SDW in �TMTSF�2ClO4. This
material has a similar band structure as �TMTSF�2ClO4, but
the origin of the pairs of the quasi-one-dimensional Fermi
surface in �Per�2M�mnt�2 is different from that in
�TMTSF�2ClO4. The origin of the four pairs of the quasi-
one-dimensional Fermi surface in �Per�2M�mnt�2 is the exis-
tence of four perylene molecules in the unit cell in the per-
pendicular plane to the conduction axis,46 while the origin of
the two pairs of the quasi-one-dimensional Fermi surface in
�TMTSF�2ClO4 is the periodic potential caused by the anion
ordering. It will be interesting to study the similarity and the
difference between the two materials, since the spin suscep-
tibility �0�Q� and the charge susceptibility �c�Q� for the
noninteracting system have the same Q dependence caused
by the nesting properties of the Fermi surface, except for the
effects of the Zeeman splitting of the Fermi surface, which
play an important role only for CDW.
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